SpringCloud01

1.认识微服务

随着互联网行业的发展,对服务的要求也越来越高,服务架构也从单体架构逐渐演变为现在流行的微服务架构。这些架构之间有怎样的差别呢?

1.0.学习目标

了解微服务架构的优缺点

1.1.单体架构

单体架构:将业务的所有功能集中在一个项目中开发,打成一个包部署。

单体架构的优缺点如下:

优点:

  • 架构简单
  • 部署成本低

缺点:

  • 耦合度高(维护困难、升级困难)

1.2.分布式架构

分布式架构:根据业务功能对系统做拆分,每个业务功能模块作为独立项目开发,称为一个服务。

分布式架构的优缺点:

优点:

  • 降低服务耦合
  • 有利于服务升级和拓展

缺点:

  • 服务调用关系错综复杂

分布式架构虽然降低了服务耦合,但是服务拆分时也有很多问题需要思考:

  • 服务拆分的粒度如何界定?
  • 服务之间如何调用?
  • 服务的调用关系如何管理?

人们需要制定一套行之有效的标准来约束分布式架构。

1.3.微服务

微服务的架构特征:

  • 单一职责:微服务拆分粒度更小,每一个服务都对应唯一的业务能力,做到单一职责
  • 自治:团队独立、技术独立、数据独立,独立部署和交付
  • 面向服务:服务提供统一标准的接口,与语言和技术无关
  • 隔离性强:服务调用做好隔离、容错、降级,避免出现级联问题

微服务的上述特性其实是在给分布式架构制定一个标准,进一步降低服务之间的耦合度,提供服务的独立性和灵活性。做到高内聚,低耦合。

因此,可以认为微服务是一种经过良好架构设计的分布式架构方案

但方案该怎么落地?选用什么样的技术栈?全球的互联网公司都在积极尝试自己的微服务落地方案。

其中在Java领域最引人注目的就是SpringCloud提供的方案了。

1.4.SpringCloud

SpringCloud是目前国内使用最广泛的微服务框架。官网地址:https://spring.io/projects/spring-cloud

SpringCloud集成了各种微服务功能组件,并基于SpringBoot实现了这些组件的自动装配,从而提供了良好的开箱即用体验。

其中常见的组件包括:

另外,SpringCloud底层是依赖于SpringBoot的,并且有版本的兼容关系,如下:

我们课堂学习的版本是 Hoxton.SR10,因此对应的SpringBoot版本是2.3.x版本。

1.5.总结

  • 单体架构:简单方便,高度耦合,扩展性差,适合小型项目。例如:学生管理系统
  • 分布式架构:松耦合,扩展性好,但架构复杂,难度大。适合大型互联网项目,例如:京东、淘宝
  • 微服务:一种良好的分布式架构方案①优点:拆分粒度更小、服务更独立、耦合度更低②缺点:架构非常复杂,运维、监控、部署难度提高
  • SpringCloud是微服务架构的一站式解决方案,集成了各种优秀微服务功能组件

2.服务拆分和远程调用

任何分布式架构都离不开服务的拆分,微服务也是一样。

2.1.服务拆分原则

这里我总结了微服务拆分时的几个原则:

  • 不同微服务,不要重复开发相同业务
  • 微服务数据独立,不要访问其它微服务的数据库
  • 微服务可以将自己的业务暴露为接口,供其它微服务调用

2.2.服务拆分示例

以课前资料中的微服务cloud-demo为例,其结构如下:

cloud-demo:父工程,管理依赖

  • order-service:订单微服务,负责订单相关业务
  • user-service:用户微服务,负责用户相关业务

要求:

  • 订单微服务和用户微服务都必须有各自的数据库,相互独立
  • 订单服务和用户服务都对外暴露Restful的接口
  • 订单服务如果需要查询用户信息,只能调用用户服务的Restful接口,不能查询用户数据库

2.2.1.导入Sql语句

首先,将课前资料提供的cloud-order.sqlcloud-user.sql导入到mysql中:

cloud-user表中初始数据如下:

cloud-order表中初始数据如下:

cloud-order表中持有cloud-user表中的id字段。

2.2.2.导入demo工程

用IDEA导入课前资料提供的Demo:

项目结构如下:

导入后,会在IDEA右下角出现弹窗:

点击弹窗,然后按下图选择:

会出现这样的菜单:

配置下项目使用的JDK:

2.3.实现远程调用案例

在order-service服务中,有一个根据id查询订单的接口:

根据id查询订单,返回值是Order对象,如图:

其中的user为null

在user-service中有一个根据id查询用户的接口:

查询的结果如图:

2.3.1.案例需求:

修改order-service中的根据id查询订单业务,要求在查询订单的同时,根据订单中包含的userId查询出用户信息,一起返回。

因此,我们需要在order-service中 向user-service发起一个http的请求,调用http://localhost:8081/user/{userId}这个接口。

大概的步骤是这样的:

  • 注册一个RestTemplate的实例到Spring容器
  • 修改order-service服务中的OrderService类中的queryOrderById方法,根据Order对象中的userId查询User
  • 将查询的User填充到Order对象,一起返回

2.3.2.注册RestTemplate

首先,我们在order-service服务中的OrderApplication启动类中,注册RestTemplate实例:

package cn.itcast.order;

import org.mybatis.spring.annotation.MapperScan;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.web.client.RestTemplate;

@MapperScan("cn.itcast.order.mapper")
@SpringBootApplication
public class OrderApplication {

    public static void main(String[] args) {
        SpringApplication.run(OrderApplication.class, args);
    }

    @Bean
    public RestTemplate restTemplate() {
        return new RestTemplate();
    }
}

2.3.3.实现远程调用

修改order-service服务中的cn.itcast.order.service包下的OrderService类中的queryOrderById方法:

2.4.提供者与消费者

在服务调用关系中,会有两个不同的角色:

服务提供者:一次业务中,被其它微服务调用的服务。(提供接口给其它微服务)

服务消费者:一次业务中,调用其它微服务的服务。(调用其它微服务提供的接口)

但是,服务提供者与服务消费者的角色并不是绝对的,而是相对于业务而言。

如果服务A调用了服务B,而服务B又调用了服务C,服务B的角色是什么?

  • 对于A调用B的业务而言:A是服务消费者,B是服务提供者
  • 对于B调用C的业务而言:B是服务消费者,C是服务提供者

因此,服务B既可以是服务提供者,也可以是服务消费者。

3.Eureka注册中心

假如我们的服务提供者user-service部署了多个实例,如图:

大家思考几个问题:

  • order-service在发起远程调用的时候,该如何得知user-service实例的ip地址和端口?
  • 有多个user-service实例地址,order-service调用时该如何选择?
  • order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?

3.1.Eureka的结构和作用

这些问题都需要利用SpringCloud中的注册中心来解决,其中最广为人知的注册中心就是Eureka,其结构如下:

回答之前的各个问题。

问题1:order-service如何得知user-service实例地址?

获取地址信息的流程如下:

  • user-service服务实例启动后,将自己的信息注册到eureka-server(Eureka服务端)。这个叫服务注册
  • eureka-server保存服务名称到服务实例地址列表的映射关系
  • order-service根据服务名称,拉取实例地址列表。这个叫服务发现或服务拉取

问题2:order-service如何从多个user-service实例中选择具体的实例?

  • order-service从实例列表中利用负载均衡算法选中一个实例地址
  • 向该实例地址发起远程调用

问题3:order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?

  • user-service会每隔一段时间(默认30秒)向eureka-server发起请求,报告自己状态,称为心跳
  • 当超过一定时间没有发送心跳时,eureka-server会认为微服务实例故障,将该实例从服务列表中剔除
  • order-service拉取服务时,就能将故障实例排除了

注意:一个微服务,既可以是服务提供者,又可以是服务消费者,因此eureka将服务注册、服务发现等功能统一封装到了eureka-client端

因此,接下来我们动手实践的步骤包括:

3.2.搭建eureka-server

首先大家注册中心服务端:eureka-server,这必须是一个独立的微服务

3.2.1.创建eureka-server服务

在cloud-demo父工程下,创建一个子模块:

填写模块信息:

然后填写服务信息:

3.2.2.引入eureka依赖

引入SpringCloud为eureka提供的starter依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>
</dependency>

3.2.3.编写启动类

给eureka-server服务编写一个启动类,一定要添加一个@EnableEurekaServer注解,开启eureka的注册中心功能:

package cn.itcast.eureka;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

@SpringBootApplication
@EnableEurekaServer
public class EurekaApplication {
    public static void main(String[] args) {
        SpringApplication.run(EurekaApplication.class, args);
    }
}

3.2.4.编写配置文件

编写一个application.yml文件,内容如下:

server:
  port: 10086
spring:
  application:
    name: eureka-server
eureka:
  client:
    service-url: 
      defaultZone: http://127.0.0.1:10086/eureka

3.2.5.启动服务

启动微服务,然后在浏览器访问:http://127.0.0.1:10086

看到下面结果应该是成功了:

3.3.服务注册

下面,我们将user-service注册到eureka-server中去。

1)引入依赖

在user-service的pom文件中,引入下面的eureka-client依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

2)配置文件

在user-service中,修改application.yml文件,添加服务名称、eureka地址:

spring:
  application:
    name: userservice
eureka:
  client:
    service-url:
      defaultZone: http://127.0.0.1:10086/eureka

3)启动多个user-service实例

为了演示一个服务有多个实例的场景,我们添加一个SpringBoot的启动配置,再启动一个user-service。

首先,复制原来的user-service启动配置:

然后,在弹出的窗口中,填写信息:

现在,SpringBoot窗口会出现两个user-service启动配置:

不过,第一个是8081端口,第二个是8082端口。

启动两个user-service实例:

查看eureka-server管理页面:

3.4.服务发现

下面,我们将order-service的逻辑修改:向eureka-server拉取user-service的信息,实现服务发现。

1)引入依赖

之前说过,服务发现、服务注册统一都封装在eureka-client依赖,因此这一步与服务注册时一致。

在order-service的pom文件中,引入下面的eureka-client依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

2)配置文件

服务发现也需要知道eureka地址,因此第二步与服务注册一致,都是配置eureka信息:

在order-service中,修改application.yml文件,添加服务名称、eureka地址:

spring:
  application:
    name: orderservice
eureka:
  client:
    service-url:
      defaultZone: http://127.0.0.1:10086/eureka

3)服务拉取和负载均衡

最后,我们要去eureka-server中拉取user-service服务的实例列表,并且实现负载均衡。

不过这些动作不用我们去做,只需要添加一些注解即可。

在order-service的OrderApplication中,给RestTemplate这个Bean添加一个@LoadBalanced注解:

修改order-service服务中的cn.itcast.order.service包下的OrderService类中的queryOrderById方法。修改访问的url路径,用服务名代替ip、端口:

spring会自动帮助我们从eureka-server端,根据userservice这个服务名称,获取实例列表,而后完成负载均衡。

4.Ribbon负载均衡

上一节中,我们添加了@LoadBalanced注解,即可实现负载均衡功能,这是什么原理呢?

4.1.负载均衡原理

SpringCloud底层其实是利用了一个名为Ribbon的组件,来实现负载均衡功能的。

那么我们发出的请求明明是http://userservice/user/1,怎么变成了http://localhost:8081的呢?

4.2.源码跟踪

为什么我们只输入了service名称就可以访问了呢?之前还要获取ip和端口。

显然有人帮我们根据service名称,获取到了服务实例的ip和端口。它就是LoadBalancerInterceptor,这个类会在对RestTemplate的请求进行拦截,然后从Eureka根据服务id获取服务列表,随后利用负载均衡算法得到真实的服务地址信息,替换服务id。

我们进行源码跟踪:

1)LoadBalancerIntercepor

可以看到这里的intercept方法,拦截了用户的HttpRequest请求,然后做了几件事:

  • request.getURI():获取请求uri,本例中就是 http://user-service/user/8
  • originalUri.getHost():获取uri路径的主机名,其实就是服务id,user-service
  • this.loadBalancer.execute():处理服务id,和用户请求。

这里的this.loadBalancerLoadBalancerClient类型,我们继续跟入。

2)LoadBalancerClient

继续跟入execute方法:

代码是这样的:

  • getLoadBalancer(serviceId):根据服务id获取ILoadBalancer,而ILoadBalancer会拿着服务id去eureka中获取服务列表并保存起来。
  • getServer(loadBalancer):利用内置的负载均衡算法,从服务列表中选择一个。本例中,可以看到获取了8082端口的服务

放行后,再次访问并跟踪,发现获取的是8081:

果然实现了负载均衡。

3)负载均衡策略IRule

在刚才的代码中,可以看到获取服务使通过一个getServer方法来做负载均衡:

我们继续跟入:

继续跟踪源码chooseServer方法,发现这么一段代码:

我们看看这个rule是谁:

这里的rule默认值是一个RoundRobinRule,看类的介绍:

这不就是轮询的意思嘛。

到这里,整个负载均衡的流程我们就清楚了。

4)总结

SpringCloudRibbon的底层采用了一个拦截器,拦截了RestTemplate发出的请求,对地址做了修改。用一幅图来总结一下:

基本流程如下:

  • 拦截我们的RestTemplate请求http://userservice/user/1
  • RibbonLoadBalancerClient会从请求url中获取服务名称,也就是user-service
  • DynamicServerListLoadBalancer根据user-service到eureka拉取服务列表
  • eureka返回列表,localhost:8081、localhost:8082
  • IRule利用内置负载均衡规则,从列表中选择一个,例如localhost:8081
  • RibbonLoadBalancerClient修改请求地址,用localhost:8081替代userservice,得到http://localhost:8081/user/1,发起真实请求

4.3.负载均衡策略

4.3.1.负载均衡策略

负载均衡的规则都定义在IRule接口中,而IRule有很多不同的实现类:

不同规则的含义如下:

| 内置负载均衡规则类 | 规则描述 |
| :— | :— |
| RoundRobinRule | 简单轮询服务列表来选择服务器。它是Ribbon默认的负载均衡规则。 |
| AvailabilityFilteringRule | 对以下两种服务器进行忽略: (1)在默认情况下,这台服务器如果3次连接失败,这台服务器就会被设置为“短路”状态。短路状态将持续30秒,如果再次连接失败,短路的持续时间就会几何级地增加。 (2)并发数过高的服务器。如果一个服务器的并发连接数过高,配置了AvailabilityFilteringRule规则的客户端也会将其忽略。并发连接数的上限,可以由客户端的..ActiveConnectionsLimit属性进行配置。 |
| WeightedResponseTimeRule | 为每一个服务器赋予一个权重值。服务器响应时间越长,这个服务器的权重就越小。这个规则会随机选择服务器,这个权重值会影响服务器的选择。 |
| ZoneAvoidanceRule | 以区域可用的服务器为基础进行服务器的选择。使用Zone对服务器进行分类,这个Zone可以理解为一个机房、一个机架等。而后再对Zone内的多个服务做轮询。 |
| BestAvailableRule | 忽略那些短路的服务器,并选择并发数较低的服务器。 |
| RandomRule | 随机选择一个可用的服务器。 |
| RetryRule | 重试机制的选择逻辑 |

默认的实现就是ZoneAvoidanceRule,是一种轮询方案

4.3.2.自定义负载均衡策略

通过定义IRule实现可以修改负载均衡规则,有两种方式:

  1. 代码方式:在order-service中的OrderApplication类中,定义一个新的IRule:
@Bean
public IRule randomRule(){
    return new RandomRule();
}
  1. 配置文件方式:在order-service的application.yml文件中,添加新的配置也可以修改规则:
userservice: # 给某个微服务配置负载均衡规则,这里是userservice服务
  ribbon:
    NFLoadBalancerRuleClassName: com.netflix.loadbalancer.RandomRule # 负载均衡规则

注意,一般用默认的负载均衡规则,不做修改。

4.4.饥饿加载

Ribbon默认是采用懒加载,即第一次访问时才会去创建LoadBalanceClient,请求时间会很长。

而饥饿加载则会在项目启动时创建,降低第一次访问的耗时,通过下面配置开启饥饿加载:

ribbon:
  eager-load:
    enabled: true
    clients: userservice

5.Nacos注册中心

国内公司一般都推崇阿里巴巴的技术,比如注册中心,SpringCloudAlibaba也推出了一个名为Nacos的注册中心。

5.1.认识和安装Nacos

Nacos是阿里巴巴的产品,现在是SpringCloud中的一个组件。相比Eureka功能更加丰富,在国内受欢迎程度较高。

安装方式可以参考课前资料《Nacos安装指南.md》

5.2.服务注册到nacos

Nacos是SpringCloudAlibaba的组件,而SpringCloudAlibaba也遵循SpringCloud中定义的服务注册、服务发现规范。因此使用Nacos和使用Eureka对于微服务来说,并没有太大区别。

主要差异在于:

  • 依赖不同
  • 服务地址不同

1)引入依赖

在cloud-demo父工程的pom文件中的中引入SpringCloudAlibaba的依赖:

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-alibaba-dependencies</artifactId>
    <version>2.2.6.RELEASE</version>
    <type>pom</type>
    <scope>import</scope>
</dependency>

然后在user-service和order-service中的pom文件中引入nacos-discovery依赖:

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
</dependency>

注意:不要忘了注释掉eureka的依赖。

2)配置nacos地址

在user-service和order-service的application.yml中添加nacos地址:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848

注意:不要忘了注释掉eureka的地址

3)重启

重启微服务后,登录nacos管理页面,可以看到微服务信息:

解决springcloud“I/O error on GET request for xxx;nested exception xxx问题”

问题原因是嵌套的xxxservice请求未知
解决方法:
在springcloud启动类中的RestTemplate类的Bean,未用@LoadBalanced注解修饰
错误代码:

@Bean   
public RestTemplate initRestTemplate(){         return new RestTemplate();  } 

修改后代码:

@Bean   @LoadBalanced   
public RestTemplate initRestTemplate(){         return new RestTemplate();  } 

解释:
@LoadBalanced注解为RestTemplate Bean添加了一个LoadBalancerInterceptor拦截器。可以将请求的地址中的服务逻辑名转为具体的服务地址。也就是将localhost:8080转成了Eureka的application的名称。所以没有加该注解则会报xxxservice未找到

5.3.服务分级存储模型

一个服务可以有多个实例,例如我们的user-service,可以有:

  • 127.0.0.1:8081
  • 127.0.0.1:8082
  • 127.0.0.1:8083

假如这些实例分布于全国各地的不同机房,例如:

  • 127.0.0.1:8081,在上海机房
  • 127.0.0.1:8082,在上海机房
  • 127.0.0.1:8083,在杭州机房

Nacos就将同一机房内的实例 划分为一个集群

也就是说,user-service是服务,一个服务可以包含多个集群,如杭州、上海,每个集群下可以有多个实例,形成分级模型,如图:

微服务互相访问时,应该尽可能访问同集群实例,因为本地访问速度更快。当本集群内不可用时,才访问其它集群。例如:

杭州机房内的order-service应该优先访问同机房的user-service。

5.3.1.给user-service配置集群

修改user-service的application.yml文件,添加集群配置:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848
      discovery:
        cluster-name: HZ # 集群名称

重启两个user-service实例后,我们可以在nacos控制台看到下面结果:

我们再次复制一个user-service启动配置,添加属性:

-Dserver.port=8083 -Dspring.cloud.nacos.discovery.cluster-name=SH

配置如图所示:

启动UserApplication3后再次查看nacos控制台:

5.3.2.同集群优先的负载均衡

默认的ZoneAvoidanceRule并不能实现根据同集群优先来实现负载均衡。

因此Nacos中提供了一个NacosRule的实现,可以优先从同集群中挑选实例。

1)给order-service配置集群信息

修改order-service的application.yml文件,添加集群配置:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848
      discovery:
        cluster-name: HZ # 集群名称

2)修改负载均衡规则

修改order-service的application.yml文件,修改负载均衡规则:

userservice:
  ribbon:
    NFLoadBalancerRuleClassName: com.alibaba.cloud.nacos.ribbon.NacosRule # 负载均衡规则

5.4.权重配置

实际部署中会出现这样的场景:

服务器设备性能有差异,部分实例所在机器性能较好,另一些较差,我们希望性能好的机器承担更多的用户请求。

但默认情况下NacosRule是同集群内随机挑选,不会考虑机器的性能问题。

因此,Nacos提供了权重配置来控制访问频率,权重越大则访问频率越高。

在nacos控制台,找到user-service的实例列表,点击编辑,即可修改权重:

在弹出的编辑窗口,修改权重:

注意:如果权重修改为0,则该实例永远不会被访问

5.5.环境隔离

Nacos提供了namespace来实现环境隔离功能。

  • nacos中可以有多个namespace
  • namespace下可以有group、service等
  • 不同namespace之间相互隔离,例如不同namespace的服务互相不可见

5.5.1.创建namespace

默认情况下,所有service、data、group都在同一个namespace,名为public:

我们可以点击页面新增按钮,添加一个namespace:

然后,填写表单:

就能在页面看到一个新的namespace:

5.5.2.给微服务配置namespace

给微服务配置namespace只能通过修改配置来实现。

例如,修改order-service的application.yml文件:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848
      discovery:
        cluster-name: HZ
        namespace: 492a7d5d-237b-46a1-a99a-fa8e98e4b0f9 # 命名空间,填ID

重启order-service后,访问控制台,可以看到下面的结果:

此时访问order-service,因为namespace不同,会导致找不到userservice,控制台会报错:

5.6.Nacos与Eureka的区别

Nacos的服务实例分为两种l类型:

  • 临时实例:如果实例宕机超过一定时间,会从服务列表剔除,默认的类型。
  • 非临时实例:如果实例宕机,不会从服务列表剔除,也可以叫永久实例。

配置一个服务实例为永久实例:

spring:
  cloud:
    nacos:
      discovery:
        ephemeral: false # 设置为非临时实例

Nacos和Eureka整体结构类似,服务注册、服务拉取、心跳等待,但是也存在一些差异:

  • Nacos与eureka的共同点
    • 都支持服务注册和服务拉取
    • 都支持服务提供者心跳方式做健康检测
  • Nacos与Eureka的区别
    • Nacos支持服务端主动检测提供者状态:临时实例采用心跳模式,非临时实例采用主动检测模式
    • 临时实例心跳不正常会被剔除,非临时实例则不会被剔除
    • Nacos支持服务列表变更的消息推送模式,服务列表更新更及时
    • Nacos集群默认采用AP方式,当集群中存在非临时实例时,采用CP模式;Eureka采用AP方式

SpringCloud实用篇02

0.学习目标

1.Nacos配置管理

Nacos除了可以做注册中心,同样可以做配置管理来使用。

1.1.统一配置管理

当微服务部署的实例越来越多,达到数十、数百时,逐个修改微服务配置就会让人抓狂,而且很容易出错。我们需要一种统一配置管理方案,可以集中管理所有实例的配置。

Nacos一方面可以将配置集中管理,另一方可以在配置变更时,及时通知微服务,实现配置的热更新。

1.1.1.在nacos中添加配置文件

如何在nacos中管理配置呢?

然后在弹出的表单中,填写配置信息:

注意:项目的核心配置,需要热更新的配置才有放到nacos管理的必要。基本不会变更的一些配置还是保存在微服务本地比较好。

1.1.2.从微服务拉取配置

微服务要拉取nacos中管理的配置,并且与本地的application.yml配置合并,才能完成项目启动。

但如果尚未读取application.yml,又如何得知nacos地址呢?

因此spring引入了一种新的配置文件:bootstrap.yaml文件,会在application.yml之前被读取,流程如下:

1)引入nacos-config依赖

首先,在user-service服务中,引入nacos-config的客户端依赖:

<!--nacos配置管理依赖-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId>
</dependency>

新版本 加入spring-cloud-starter-bootstrap  bootstrap 才生效
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-bootstrap</artifactId>
        </dependency>

2)添加bootstrap.yaml

然后,在user-service中添加一个bootstrap.yaml文件,内容如下:

spring:
  application:
    name: userservice # 服务名称
  profiles:
    active: dev #开发环境,这里是dev 
  cloud:
    nacos:
      server-addr: localhost:8848 # Nacos地址
      config:
        file-extension: yaml # 文件后缀名

这里会根据spring.cloud.nacos.server-addr获取nacos地址,再根据

${spring.application.name}-${spring.profiles.active}.${spring.cloud.nacos.config.file-extension}作为文件id,来读取配置。

本例中,就是去读取userservice-dev.yaml

3)读取nacos配置

在user-service中的UserController中添加业务逻辑,读取pattern.dateformat配置:

注意这里的环境 如果 没有dev环境 就别配置 这里的dev 是指的Nacos的dev环境 并非Java的dev环境

完整代码:

package cn.itcast.user.web;

import cn.itcast.user.pojo.User;
import cn.itcast.user.service.UserService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.*;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

@Slf4j
@RestController
@RequestMapping("/user")
public class UserController {

    @Autowired
    private UserService userService;

    @Value("${pattern.dateformat}")
    private String dateformat;
    
    @GetMapping("now")
    public String now(){
        return LocalDateTime.now().format(DateTimeFormatter.ofPattern(dateformat));
    }
    // ...略
}

在页面访问,可以看到效果:

无法注入的在UserController上添加@RefreshScope就可以了

1.2.配置热更新

我们最终的目的,是修改nacos中的配置后,微服务中无需重启即可让配置生效,也就是配置热更新

要实现配置热更新,可以使用两种方式:

1.2.1.方式一

在@Value注入的变量所在类上添加注解@RefreshScope:

1.2.2.方式二

使用@ConfigurationProperties注解代替@Value注解。

在user-service服务中,添加一个类,读取patterrn.dateformat属性:

package cn.itcast.user.config;

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.stereotype.Component;

@Component
@Data
@ConfigurationProperties(prefix = "pattern")
public class PatternProperties {
    private String dateformat;
}

在UserController中使用这个类代替@Value:

完整代码:

package cn.itcast.user.web;

import cn.itcast.user.config.PatternProperties;
import cn.itcast.user.pojo.User;
import cn.itcast.user.service.UserService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

@Slf4j
@RestController
@RequestMapping("/user")
public class UserController {

    @Autowired
    private UserService userService;

    @Autowired
    private PatternProperties patternProperties;

    @GetMapping("now")
    public String now(){
        return LocalDateTime.now().format(DateTimeFormatter.ofPattern(patternProperties.getDateformat()));
    }

    // 略
}

1.3.配置共享

其实微服务启动时,会去nacos读取多个配置文件,例如:

  • [spring.application.name]-[spring.profiles.active].yaml,例如:userservice-dev.yaml
  • [spring.application.name].yaml,例如:userservice.yaml

[spring.application.name].yaml不包含环境,因此可以被多个环境共享。

下面我们通过案例来测试配置共享

1)添加一个环境共享配置

我们在nacos中添加一个userservice.yaml文件:

2)在user-service中读取共享配置

在user-service服务中,修改PatternProperties类,读取新添加的属性:

在user-service服务中,修改UserController,添加一个方法:

3)运行两个UserApplication,使用不同的profile

修改UserApplication2这个启动项,改变其profile值:

这样,UserApplication(8081)使用的profile是dev,UserApplication2(8082)使用的profile是test。

启动UserApplication和UserApplication2

访问http://localhost:8081/user/prop,结果:

访问http://localhost:8082/user/prop,结果:

可以看出来,不管是dev,还是test环境,都读取到了envSharedValue这个属性的值。

4)配置共享的优先级

当nacos、服务本地同时出现相同属性时,优先级有高低之分:

1.4.搭建Nacos集群

Nacos生产环境下一定要部署为集群状态,部署方式参考课前资料中的文档:

2.Feign远程调用

先来看我们以前利用RestTemplate发起远程调用的代码:

存在下面的问题:

•代码可读性差,编程体验不统一

•参数复杂URL难以维护

Feign是一个声明式的http客户端,官方地址:https://github.com/OpenFeign/feign

其作用就是帮助我们优雅的实现http请求的发送,解决上面提到的问题。

2.1.Feign替代RestTemplate

Fegin的使用步骤如下:

1)引入依赖

我们在order-service服务的pom文件中引入feign的依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

2)添加注解

在order-service的启动类添加注解开启Feign的功能:

3)编写Feign的客户端

在order-service中新建一个接口,内容如下:

package cn.itcast.order.client;

import cn.itcast.order.pojo.User;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;

@FeignClient("userservice")
public interface UserClient {
    @GetMapping("/user/{id}")
    User findById(@PathVariable("id") Long id);
}

这个客户端主要是基于SpringMVC的注解来声明远程调用的信息,比如:

  • 服务名称:userservice
  • 请求方式:GET
  • 请求路径:/user/{id}
  • 请求参数:Long id
  • 返回值类型:User

这样,Feign就可以帮助我们发送http请求,无需自己使用RestTemplate来发送了。

4)测试

修改order-service中的OrderService类中的queryOrderById方法,使用Feign客户端代替RestTemplate:

是不是看起来优雅多了。

5)总结

使用Feign的步骤:

① 引入依赖

② 添加@EnableFeignClients注解

③ 编写FeignClient接口

④ 使用FeignClient中定义的方法代替RestTemplate

2.2.自定义配置

Feign可以支持很多的自定义配置,如下表所示:

| 类型 | 作用 | 说明 |
| :— | :— | :— |
| feign.Logger.Level | 修改日志级别 | 包含四种不同的级别:NONE、BASIC、HEADERS、FULL |
| feign.codec.Decoder | 响应结果的解析器 | http远程调用的结果做解析,例如解析json字符串为java对象 |
| feign.codec.Encoder | 请求参数编码 | 将请求参数编码,便于通过http请求发送 |
| feign. Contract | 支持的注解格式 | 默认是SpringMVC的注解 |
| feign. Retryer | 失败重试机制 | 请求失败的重试机制,默认是没有,不过会使用Ribbon的重试 |

一般情况下,默认值就能满足我们使用,如果要自定义时,只需要创建自定义的@Bean覆盖默认Bean即可。

下面以日志为例来演示如何自定义配置。

2.2.1.配置文件方式

基于配置文件修改feign的日志级别可以针对单个服务:

feign:  
  client:
    config: 
      userservice: # 针对某个微服务的配置
        loggerLevel: FULL #  日志级别

也可以针对所有服务:

feign:  
  client:
    config: 
      default: # 这里用default就是全局配置,如果是写服务名称,则是针对某个微服务的配置
        loggerLevel: FULL #  日志级别

而日志的级别分为四种:

  • NONE:不记录任何日志信息,这是默认值。
  • BASIC:仅记录请求的方法,URL以及响应状态码和执行时间
  • HEADERS:在BASIC的基础上,额外记录了请求和响应的头信息
  • FULL:记录所有请求和响应的明细,包括头信息、请求体、元数据。

2.2.2.Java代码方式

也可以基于Java代码来修改日志级别,先声明一个类,然后声明一个Logger.Level的对象:

public class DefaultFeignConfiguration  {
    @Bean
    public Logger.Level feignLogLevel(){
        return Logger.Level.BASIC; // 日志级别为BASIC
    }
}

如果要全局生效,将其放到启动类的@EnableFeignClients这个注解中:

@EnableFeignClients(defaultConfiguration = DefaultFeignConfiguration .class)

如果是局部生效,则把它放到对应的@FeignClient这个注解中:

@FeignClient(value = “userservice”, configuration = DefaultFeignConfiguration .class)

2.3.Feign使用优化

Feign底层发起http请求,依赖于其它的框架。其底层客户端实现包括:

•URLConnection:默认实现,不支持连接池

•Apache HttpClient :支持连接池

•OKHttp:支持连接池

因此提高Feign的性能主要手段就是使用连接池代替默认的URLConnection。

这里我们用Apache的HttpClient来演示。

1)引入依赖

在order-service的pom文件中引入Apache的HttpClient依赖:

<!--httpClient的依赖 -->
<dependency>
    <groupId>io.github.openfeign</groupId>
    <artifactId>feign-httpclient</artifactId>
</dependency>

2)配置连接池

在order-service的application.yml中添加配置:

feign:
  client:
    config:
      default: # default全局的配置
        loggerLevel: BASIC # 日志级别,BASIC就是基本的请求和响应信息
  httpclient:
    enabled: true # 开启feign对HttpClient的支持
    max-connections: 200 # 最大的连接数
    max-connections-per-route: 50 # 每个路径的最大连接数

接下来,在FeignClientFactoryBean中的loadBalance方法中打断点:

Debug方式启动order-service服务,可以看到这里的client,底层就是Apache HttpClient:

总结,Feign的优化:

1.日志级别尽量用basic

2.使用HttpClient或OKHttp代替URLConnection

① 引入feign-httpClient依赖

② 配置文件开启httpClient功能,设置连接池参数

2.4.最佳实践

所谓最近实践,就是使用过程中总结的经验,最好的一种使用方式。

自习观察可以发现,Feign的客户端与服务提供者的controller代码非常相似:

feign客户端:

UserController:

有没有一种办法简化这种重复的代码编写呢?

2.4.1.继承方式

一样的代码可以通过继承来共享:

1)定义一个API接口,利用定义方法,并基于SpringMVC注解做声明。

2)Feign客户端和Controller都集成改接口

优点:

  • 简单
  • 实现了代码共享

缺点:

  • 服务提供方、服务消费方紧耦合
  • 参数列表中的注解映射并不会继承,因此Controller中必须再次声明方法、参数列表、注解

2.4.2.抽取方式

将Feign的Client抽取为独立模块,并且把接口有关的POJO、默认的Feign配置都放到这个模块中,提供给所有消费者使用。

例如,将UserClient、User、Feign的默认配置都抽取到一个feign-api包中,所有微服务引用该依赖包,即可直接使用。

2.4.3.实现基于抽取的最佳实践

1)抽取

首先创建一个module,命名为feign-api:

项目结构:

在feign-api中然后引入feign的starter依赖

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

然后,order-service中编写的UserClient、User、DefaultFeignConfiguration都复制到feign-api项目中

2)在order-service中使用feign-api

首先,删除order-service中的UserClient、User、DefaultFeignConfiguration等类或接口。

在order-service的pom文件中中引入feign-api的依赖:

<dependency>
    <groupId>cn.itcast.demo</groupId>
    <artifactId>feign-api</artifactId>
    <version>1.0</version>
</dependency>

修改order-service中的所有与上述三个组件有关的导包部分,改成导入feign-api中的包

3)重启测试

重启后,发现服务报错了:

这是因为UserClient现在在cn.itcast.feign.clients包下,

而order-service的@EnableFeignClients注解是在cn.itcast.order包下,不在同一个包,无法扫描到UserClient。

4)解决扫描包问题

方式一:

指定Feign应该扫描的包:

@EnableFeignClients(basePackages = “cn.itcast.feign.clients”)

方式二:

指定需要加载的Client接口:

@EnableFeignClients(clients = {UserClient.class})

3.Gateway服务网关

Spring Cloud Gateway 是 Spring Cloud 的一个全新项目,该项目是基于 Spring 5.0,Spring Boot 2.0 和 Project Reactor 等响应式编程和事件流技术开发的网关,它旨在为微服务架构提供一种简单有效的统一的 API 路由管理方式。

3.1.为什么需要网关

Gateway网关是我们服务的守门神,所有微服务的统一入口。

网关的核心功能特性

  • 请求路由
  • 权限控制
  • 限流

架构图:

权限控制:网关作为微服务入口,需要校验用户是是否有请求资格,如果没有则进行拦截。

路由和负载均衡:一切请求都必须先经过gateway,但网关不处理业务,而是根据某种规则,把请求转发到某个微服务,这个过程叫做路由。当然路由的目标服务有多个时,还需要做负载均衡。

限流:当请求流量过高时,在网关中按照下流的微服务能够接受的速度来放行请求,避免服务压力过大。

在SpringCloud中网关的实现包括两种:

  • gateway
  • zuul

Zuul是基于Servlet的实现,属于阻塞式编程。而SpringCloudGateway则是基于Spring5中提供的WebFlux,属于响应式编程的实现,具备更好的性能。

3.2.gateway快速入门

下面,我们就演示下网关的基本路由功能。基本步骤如下:

  1. 创建SpringBoot工程gateway,引入网关依赖
  2. 编写启动类
  3. 编写基础配置和路由规则
  4. 启动网关服务进行测试

1)创建gateway服务,引入依赖

创建服务:

引入依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.7.4</version>
        <relativePath/>
    </parent>
    <groupId>com.zaj</groupId>
    <artifactId>C012_Getway</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>C012_Getway</name>
    <description>C012_Getway</description>
    <properties>
        <java.version>17</java.version>
        <!--        Cloud版本-->
        <spring-cloud.version>2021.0.2</spring-cloud.version>

        <!--        Nacos地址-->
        <nacos.address>192.168.86.128:8848</nacos.address>
        <!--        JDBC 链接串1  USER-->
        <mysql.address1>jdbc:mysql://192.168.86.128:3306/Nacos?useUnicode=true&amp;characterEncoding=utf8&amp;useSSL=false</mysql.address1>
        <!--        JDBC 链接串2  Order-->
        <mysql.address2>jdbc:mysql://192.168.86.128:3306/Nacos?useUnicode=true&amp;characterEncoding=utf8&amp;useSSL=false</mysql.address2>

        <mysql.driver>com.mysql.cj.jdbc.Driver</mysql.driver>
        <mysql.usr>root</mysql.usr>
        <mysql.pwd>111</mysql.pwd>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>




        <!-- 服务注册 -->
        <dependency>
            <groupId>com.alibaba.cloud</groupId>
            <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
        </dependency>

        <!--gateway-->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-gateway</artifactId>
        </dependency>


        <!--        负载均衡器  -->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-starter-loadbalancer</artifactId>
        </dependency>



        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.83</version>
        </dependency>


    </dependencies>

    <dependencyManagement>
        <dependencies>

            <dependency>
                <groupId>com.alibaba.cloud</groupId>
                <artifactId>spring-cloud-alibaba-dependencies</artifactId>
                <version>2.2.6.RELEASE</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>







            <!--            springCould-->
            <dependency>
                <groupId>org.springframework.cloud</groupId>
                <artifactId>spring-cloud-dependencies</artifactId>
                <version>${spring-cloud.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>




    <build>
        <pluginManagement>
            <plugins>
                <plugin>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-maven-plugin</artifactId>
                    <configuration>
                        <excludes>
                            <exclude>
                                <groupId>org.projectlombok</groupId>
                                <artifactId>lombok</artifactId>
                            </exclude>
                        </excludes>
                    </configuration>
                </plugin>
            </plugins>
        </pluginManagement>


        <resources>
            <resource>
                <directory>${project.basedir}/src/main/resources</directory>
                <filtering>true</filtering>
            </resource>
            <resource>
                <directory>${project.basedir}/src/test/resources</directory>
                <filtering>true</filtering>
            </resource>
        </resources>


    </build>
</project>

2)编写启动类

package cn.itcast.gateway;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class GatewayApplication {

    public static void main(String[] args) {
        SpringApplication.run(GatewayApplication.class, args);
    }
}

3)编写基础配置和路由规则

创建application.yml文件,内容如下:

server:
  port: 10010 # 网关端口
spring:
  application:
    name: gateway # 服务名称
  cloud:
    nacos:
      server-addr: localhost:8848 # nacos地址
    gateway:
      routes: # 网关路由配置
        - id: user-service # 路由id,自定义,只要唯一即可
          # uri: http://127.0.0.1:8081 # 路由的目标地址 http就是固定地址
          uri: lb://userservice # 路由的目标地址 lb就是负载均衡,后面跟服务名称
          predicates: # 路由断言,也就是判断请求是否符合路由规则的条件
            - Path=/user/** # 这个是按照路径匹配,只要以/user/开头就符合要求

我们将符合Path 规则的一切请求,都代理到 uri参数指定的地址。

本例中,我们将 /user/**开头的请求,代理到lb://userservice,lb是负载均衡,根据服务名拉取服务列表,实现负载均衡。

4)重启测试

重启网关,访问http://localhost:10010/user/1时,符合/user/**规则,请求转发到uri:http://userservice/user/1,得到了结果:

5)网关路由的流程图

整个访问的流程如下:

总结:

网关搭建步骤:

  1. 创建项目,引入nacos服务发现和gateway依赖
  2. 配置application.yml,包括服务基本信息、nacos地址、路由

路由配置包括:

  1. 路由id:路由的唯一标示
  2. 路由目标(uri):路由的目标地址,http代表固定地址,lb代表根据服务名负载均衡
  3. 路由断言(predicates):判断路由的规则,
  4. 路由过滤器(filters):对请求或响应做处理

接下来,就重点来学习路由断言和路由过滤器的详细知识

3.3.断言工厂

我们在配置文件中写的断言规则只是字符串,这些字符串会被Predicate Factory读取并处理,转变为路由判断的条件

例如Path=/user/**是按照路径匹配,这个规则是由

org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory类来

处理的,像这样的断言工厂在SpringCloudGateway还有十几个:

| 名称 | 说明 | 示例 |
| :— | :— | :— |
| After | 是某个时间点后的请求 | - After=2037-01-20T17:42:47.789-07:00[America/Denver] |
| Before | 是某个时间点之前的请求 | - Before=2031-04-13T15:14:47.433+08:00[Asia/Shanghai] |
| Between | 是某两个时间点之前的请求 | - Between=2037-01-20T17:42:47.789-07:00[America/Denver], 2037-01-21T17:42:47.789-07:00[America/Denver] |
| Cookie | 请求必须包含某些cookie | - Cookie=chocolate, ch.p |
| Header | 请求必须包含某些header | - Header=X-Request-Id, \d+ |
| Host | 请求必须是访问某个host(域名) | - Host=.somehost.org,.anotherhost.org |
| Method | 请求方式必须是指定方式 | - Method=GET,POST |
| Path | 请求路径必须符合指定规则 | - Path=/red/{segment},/blue/** |
| Query | 请求参数必须包含指定参数 | - Query=name, Jack或者- Query=name |
| RemoteAddr | 请求者的ip必须是指定范围 | - RemoteAddr=192.168.1.1/24 |
| Weight | 权重处理 | |

我们只需要掌握Path这种路由工程就可以了。

3.4.过滤器工厂

GatewayFilter是网关中提供的一种过滤器,可以对进入网关的请求和微服务返回的响应做处理:

3.4.1.路由过滤器的种类

Spring提供了31种不同的路由过滤器工厂。例如:

| 名称 | 说明 |
| :— | :— |
| AddRequestHeader | 给当前请求添加一个请求头 |
| RemoveRequestHeader | 移除请求中的一个请求头 |
| AddResponseHeader | 给响应结果中添加一个响应头 |
| RemoveResponseHeader | 从响应结果中移除有一个响应头 |
| RequestRateLimiter | 限制请求的流量 |

3.4.2.请求头过滤器

下面我们以AddRequestHeader 为例来讲解。

需求:给所有进入userservice的请求添加一个请求头:Truth=itcast is freaking awesome!

只需要修改gateway服务的application.yml文件,添加路由过滤即可:

spring:
  cloud:
    gateway:
      routes:
      - id: user-service 
        uri: lb://userservice 
        predicates: 
        - Path=/user/** 
        filters: # 过滤器
        - AddRequestHeader=Truth, Itcast is freaking awesome! # 添加请求头

当前过滤器写在userservice路由下,因此仅仅对访问userservice的请求有效。

3.4.3.默认过滤器

如果要对所有的路由都生效,则可以将过滤器工厂写到default下。格式如下:

spring:
  cloud:
    gateway:
      routes:
      - id: user-service 
        uri: lb://userservice 
        predicates: 
        - Path=/user/**
      default-filters: # 默认过滤项
      - AddRequestHeader=Truth, Itcast is freaking awesome!

3.4.4.总结

过滤器的作用是什么?

① 对路由的请求或响应做加工处理,比如添加请求头

② 配置在路由下的过滤器只对当前路由的请求生效

defaultFilters的作用是什么?

① 对所有路由都生效的过滤器

3.5.全局过滤器

上一节学习的过滤器,网关提供了31种,但每一种过滤器的作用都是固定的。如果我们希望拦截请求,做自己的业务逻辑则没办法实现。

3.5.1.全局过滤器作用

全局过滤器的作用也是处理一切进入网关的请求和微服务响应,与GatewayFilter的作用一样。区别在于GatewayFilter通过配置定义,处理逻辑是固定的;而GlobalFilter的逻辑需要自己写代码实现。

定义方式是实现GlobalFilter接口。

public interface GlobalFilter {
    /**
     *  处理当前请求,有必要的话通过{@link GatewayFilterChain}将请求交给下一个过滤器处理
     *
     * @param exchange 请求上下文,里面可以获取Request、Response等信息
     * @param chain 用来把请求委托给下一个过滤器 
     * @return {@code Mono<Void>} 返回标示当前过滤器业务结束
     */
    Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain);
}

在filter中编写自定义逻辑,可以实现下列功能:

  • 登录状态判断
  • 权限校验
  • 请求限流等

3.5.2.自定义全局过滤器

需求:定义全局过滤器,拦截请求,判断请求的参数是否满足下面条件:

  • 参数中是否有authorization,
  • authorization参数值是否为admin

如果同时满足则放行,否则拦截

实现:

在gateway中定义一个过滤器:

package cn.itcast.gateway.filters;

import org.springframework.cloud.gateway.filter.GatewayFilterChain;
import org.springframework.cloud.gateway.filter.GlobalFilter;
import org.springframework.core.annotation.Order;
import org.springframework.http.HttpStatus;
import org.springframework.stereotype.Component;
import org.springframework.web.server.ServerWebExchange;
import reactor.core.publisher.Mono;

@Order(-1)
@Component
public class AuthorizeFilter implements GlobalFilter {
    @Override
    public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
        // 1.获取请求参数
        MultiValueMap<String, String> params = exchange.getRequest().getQueryParams();
        // 2.获取authorization参数
        String auth = params.getFirst("authorization");
        // 3.校验
        if ("admin".equals(auth)) {
            // 放行
            return chain.filter(exchange);
        }
        // 4.拦截
        // 4.1.禁止访问,设置状态码
        exchange.getResponse().setStatusCode(HttpStatus.FORBIDDEN);
        // 4.2.结束处理
        return exchange.getResponse().setComplete();
    }
}

3.5.3.过滤器执行顺序

请求进入网关会碰到三类过滤器:当前路由的过滤器、DefaultFilter、GlobalFilter

请求路由后,会将当前路由过滤器和DefaultFilter、GlobalFilter,合并到一个过滤器链(集合)中,排序后依次执行每个过滤器:

排序的规则是什么呢?

  • 每一个过滤器都必须指定一个int类型的order值,order值越小,优先级越高,执行顺序越靠前
  • GlobalFilter通过实现Ordered接口,或者添加@Order注解来指定order值,由我们自己指定
  • 路由过滤器和defaultFilter的order由Spring指定,默认是按照声明顺序从1递增。
  • 当过滤器的order值一样时,会按照 defaultFilter > 路由过滤器 > GlobalFilter的顺序执行。

详细内容,可以查看源码:

org.springframework.cloud.gateway.route.RouteDefinitionRouteLocator#getFilters()方法是先加载defaultFilters,然后再加载某个route的filters,然后合并。

org.springframework.cloud.gateway.handler.FilteringWebHandler#handle()方法会加载全局过滤器,与前面的过滤器合并后根据order排序,组织过滤器链

3.6.跨域问题

3.6.1.什么是跨域问题

跨域:域名不一致就是跨域,主要包括:

跨域问题:浏览器禁止请求的发起者与服务端发生跨域ajax请求,请求被浏览器拦截的问题

解决方案:CORS,这个以前应该学习过,这里不再赘述了。不知道的小伙伴可以查看https://www.ruanyifeng.com/blog/2016/04/cors.html

3.6.2.模拟跨域问题

找到课前资料的页面文件:

放入tomcat或者nginx这样的web服务器中,启动并访问。

可以在浏览器控制台看到下面的错误:

从localhost:8090访问localhost:10010,端口不同,显然是跨域的请求。

3.6.3.解决跨域问题

在gateway服务的application.yml文件中,添加下面的配置:

spring:
  cloud:
    gateway:
      # 。。。
      globalcors: # 全局的跨域处理
        add-to-simple-url-handler-mapping: true # 解决options请求被拦截问题
        corsConfigurations:
          '[/**]':
            allowedOrigins: # 允许哪些网站的跨域请求 
              - "http://localhost:8090"
            allowedMethods: # 允许的跨域ajax的请求方式
              - "GET"
              - "POST"
              - "DELETE"
              - "PUT"
              - "OPTIONS"
            allowedHeaders: "*" # 允许在请求中携带的头信息
            allowCredentials: true # 是否允许携带cookie
            maxAge: 360000 # 这次跨域检测的有效期

分布式搜索引擎01

– elasticsearch基础

0.学习目标

1.初识elasticsearch

1.1.了解ES

1.1.1.elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:

  • 在GitHub搜索代码
  • 在电商网站搜索商品
  • 在百度搜索答案
  • 在打车软件搜索附近的车

1.1.2.ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

1.1.3.elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/

elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass
  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

1.1.4.为什么不是其他搜索技术?

目前比较知名的搜索引擎技术排名:

虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:

1.1.5.总结

什么是elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

什么是Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

1.2.倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.2.1.正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合“%手机%“

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

1.2.2.倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件“华为手机”进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

1.2.3.正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程
  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

是不是恰好反过来了?

那么两者方式的优缺点是什么呢?

正向索引

  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

1.3.es的一些概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

1.3.1.文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

1.3.2.索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3.3.mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

| MySQL | Elasticsearch | 说明 |
| :— | :— | :— |
| Table | Index | 索引(index),就是文档的集合,类似数据库的表(table) |
| Row | Document | 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 |
| Column | Field | 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) |
| Schema | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) |
| SQL | DSL | DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD |

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

1.4.安装es、kibana

1.4.1.安装

参考课前资料:

1.4.2.分词器

参考课前资料:

1.4.3.总结

分词器的作用是什么?

  • 创建倒排索引时对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

2.索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。

我们要向es中存储数据,必须先创建“库”和“表”。

2.1.mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

例如下面的json文档:

{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "score": [99.1, 99.5, 98.9],
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器
  • weight:类型为float;参与搜索,因此需要index为true;无需分词器
  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
  • name:类型为object,需要定义多个子属性
    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2.索引库的CRUD

这里我们统一使用Kibana编写DSL的方式来演示。

2.2.1.创建索引库和映射

基本语法:

  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式:

PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}

示例:

PUT /wangchaun
{
  "mappings": {
    "properties": {
      "info":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "email":{
        "type": "keyword",
        "index": "false"
      },
      "name":{
        "properties": {
          "firstName": {
            "type": "keyword"
          }
        }
      },
      // ... 略
    }
  }
}

2.2.2.查询索引库

基本语法

  • 请求方式:GET
  • 请求路径:/索引库名
  • 请求参数:无

格式

GET /索引库名

示例

2.2.3.修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

语法说明

PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}

示例

2.2.4.删除索引库

语法:

  • 请求方式:DELETE
  • 请求路径:/索引库名
  • 请求参数:无

格式:

DELETE /索引库名

在kibana中测试:

2.2.5.总结

索引库操作有哪些?

  • 创建索引库:PUT /索引库名
  • 查询索引库:GET /索引库名
  • 删除索引库:DELETE /索引库名
  • 添加字段:PUT /索引库名/_mapping

3.文档操作

3.1.新增文档

语法:

POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
    // ...
}

示例:

POST /wangchuan/_doc/1
{
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

响应:

3.2.查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

GET /{索引库名称}/_doc/{id}

通过kibana查看数据:

GET /wangchuan/_doc/1

查看结果:

3.3.删除文档

删除使用DELETE请求,同样,需要根据id进行删除:

语法:

DELETE /{索引库名}/_doc/id值

示例:

# 根据id删除数据
DELETE /wangchuan/_doc/1

结果:

3.4.修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 增量修改:修改文档中的部分字段

3.4.1.全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

示例:

PUT /wangchuan/_doc/1
{
    "info": "黑马程序员高级Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

3.4.2.增量修改

增量修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

示例:

POST /wangchuan/_update/1
{
  "doc": {
    "email": "ZhaoYun@itcast.cn"
  }
}

3.5.总结

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
  • 查询文档:GET /{索引库名}/_doc/文档id
  • 删除文档:DELETE /{索引库名}/_doc/文档id
  • 修改文档:
    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
    • 增量修改:POST /{索引库名}/_update/文档id { “doc”: {字段}}

4.RestAPI

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client

我们学习的是Java HighLevel Rest Client客户端API

4.0.导入Demo工程

4.0.1.导入数据

首先导入课前资料提供的数据库数据:

数据结构如下:

CREATE TABLE `tb_hotel` (
  `id` bigint(20) NOT NULL COMMENT '酒店id',
  `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',
  `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',
  `price` int(10) NOT NULL COMMENT '酒店价格;例:329',
  `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',
  `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',
  `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',
  `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',
  `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',
  `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',
  `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',
  `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

4.0.2.导入项目

然后导入课前资料提供的项目:

项目结构如图:

4.0.3.mapping映射分析

创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:

  • 字段名
  • 字段数据类型
  • 是否参与搜索
  • 是否需要分词
  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型
  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
  • 分词器,我们可以统一使用ik_max_word

来看下酒店数据的索引库结构:

PUT /hotel
{
  "mappings": {
    "properties": {
      "id": {
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "ik_max_word",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword",
        "copy_to": "all"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "ik_max_word"
      }
    }
  }
}

几个特殊字段说明:

  • location:地理坐标,里面包含精度、纬度
  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索

地理坐标说明:

copy_to说明:

4.0.4.初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

分为三步:

1)引入es的RestHighLevelClient依赖:

<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties>
    <java.version>1.8</java.version>
    <elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

3)初始化RestHighLevelClient:

初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.150.101:9200")
));

这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:

package cn.itcast.hotel;

import org.apache.http.HttpHost;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

import java.io.IOException;

public class HotelIndexTest {
    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.150.101:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

4.1.创建索引库

4.1.1.代码解读

创建索引库的API如下:

代码分为三步:

  • 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
  • 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。

4.1.2.完整示例

在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

package cn.itcast.hotel.constants;

public class HotelConstants {
    public static final String MAPPING_TEMPLATE = "{
" +
            "  \"mappings\": {
" +
            "    \"properties\": {
" +
            "      \"id\": {
" +
            "        \"type\": \"keyword\"
" +
            "      },
" +
            "      \"name\":{
" +
            "        \"type\": \"text\",
" +
            "        \"analyzer\": \"ik_max_word\",
" +
            "        \"copy_to\": \"all\"
" +
            "      },
" +
            "      \"address\":{
" +
            "        \"type\": \"keyword\",
" +
            "        \"index\": false
" +
            "      },
" +
            "      \"price\":{
" +
            "        \"type\": \"integer\"
" +
            "      },
" +
            "      \"score\":{
" +
            "        \"type\": \"integer\"
" +
            "      },
" +
            "      \"brand\":{
" +
            "        \"type\": \"keyword\",
" +
            "        \"copy_to\": \"all\"
" +
            "      },
" +
            "      \"city\":{
" +
            "        \"type\": \"keyword\",
" +
            "        \"copy_to\": \"all\"
" +
            "      },
" +
            "      \"starName\":{
" +
            "        \"type\": \"keyword\"
" +
            "      },
" +
            "      \"business\":{
" +
            "        \"type\": \"keyword\"
" +
            "      },
" +
            "      \"location\":{
" +
            "        \"type\": \"geo_point\"
" +
            "      },
" +
            "      \"pic\":{
" +
            "        \"type\": \"keyword\",
" +
            "        \"index\": false
" +
            "      },
" +
            "      \"all\":{
" +
            "        \"type\": \"text\",
" +
            "        \"analyzer\": \"ik_max_word\"
" +
            "      }
" +
            "    }
" +
            "  }
" +
            "}";
}

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:

@Test
void createHotelIndex() throws IOException {
    // 1.创建Request对象
    CreateIndexRequest request = new CreateIndexRequest("hotel");
    // 2.准备请求的参数:DSL语句
    request.source(MAPPING_TEMPLATE, XContentType.JSON);
    // 3.发送请求
    client.indices().create(request, RequestOptions.DEFAULT);
}

4.2.删除索引库

删除索引库的DSL语句非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

@Test
void testDeleteHotelIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("hotel");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

4.3.判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用exists方法
@Test
void testExistsHotelIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("hotel");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

4.4.总结

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是Create、Get、Delete
  • 准备DSL( Create时需要,其它是无参)
  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

5.RestClient操作文档

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化RestHighLevelClient
  • 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口
package cn.itcast.hotel;

import cn.itcast.hotel.pojo.Hotel;
import cn.itcast.hotel.service.IHotelService;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.io.IOException;
import java.util.List;

@SpringBootTest
public class HotelDocumentTest {
    @Autowired
    private IHotelService hotelService;

    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.150.101:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

5.1.新增文档

我们要将数据库的酒店数据查询出来,写入elasticsearch中。

5.1.1.索引库实体类

数据库查询后的结果是一个Hotel类型的对象。结构如下:

@Data
@TableName("tb_hotel")
public class Hotel {
    @TableId(type = IdType.INPUT)
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String longitude;
    private String latitude;
    private String pic;
}

与我们的索引库结构存在差异:

  • longitude和latitude需要合并为location

因此,我们需要定义一个新的类型,与索引库结构吻合:

package cn.itcast.hotel.pojo;

import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}

5.1.2.语法说明

新增文档的DSL语句如下:

POST /{索引库名}/_doc/1
{
    "name": "Jack",
    "age": 21
}

对应的java代码如图:

可以看到与创建索引库类似,同样是三步走:

  • 1)创建Request对象
  • 2)准备请求参数,也就是DSL中的JSON文档
  • 3)发送请求

变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

5.1.3.完整代码

我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

  • 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
  • hotel对象需要转为HotelDoc对象
  • HotelDoc需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询酒店数据Hotel
  • 2)将Hotel封装为HotelDoc
  • 3)将HotelDoc序列化为JSON
  • 4)创建IndexRequest,指定索引库名和id
  • 5)准备请求参数,也就是JSON文档
  • 6)发送请求

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testAddDocument() throws IOException {
    // 1.根据id查询酒店数据
    Hotel hotel = hotelService.getById(61083L);
    // 2.转换为文档类型
    HotelDoc hotelDoc = new HotelDoc(hotel);
    // 3.将HotelDoc转json
    String json = JSON.toJSONString(hotelDoc);

    // 1.准备Request对象
    IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
    // 2.准备Json文档
    request.source(json, XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

5.2.查询文档

5.2.1.语法说明

查询的DSL语句如下:

GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备Request对象
  • 发送请求

不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:

可以看到,结果是一个JSON,其中文档放在一个source属性中,因此解析就是拿到source,反序列化为Java对象即可。

与之前类似,也是三步走:

  • 1)准备Request对象。这次是查询,所以是GetRequest
  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
  • 3)解析结果,就是对JSON做反序列化

5.2.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request
    GetRequest request = new GetRequest("hotel", "61082");
    // 2.发送请求,得到响应
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.解析响应结果
    String json = response.getSourceAsString();

    HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
    System.out.println(hotelDoc);
}

5.3.删除文档

删除的DSL为是这样的:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参
  • 3)发送请求。因为是删除,所以是client.delete()方法

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request
    DeleteRequest request = new DeleteRequest("hotel", "61083");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

5.4.修改文档

5.4.1.语法说明

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增
  • 增量修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注增量修改。

代码示例如图:

与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法

5.4.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("hotel", "61083");
    // 2.准备请求参数
    request.doc(
        "price", "952",
        "starName", "四钻"
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}

5.5.批量导入文档

案例需求:利用BulkRequest批量将数据库数据导入到索引库中。

步骤如下:

  • 利用mybatis-plus查询酒店数据
  • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
  • 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档

5.5.1.语法说明

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。

其中提供了一个add方法,用来添加其他请求:

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:

其实还是三步走:

  • 1)创建Request对象。这里是BulkRequest
  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
  • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法

我们在导入酒店数据时,将上述代码改造成for循环处理即可。

5.5.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testBulkRequest() throws IOException {
    // 批量查询酒店数据
    List<Hotel> hotels = hotelService.list();

    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备参数,添加多个新增的Request
    for (Hotel hotel : hotels) {
        // 2.1.转换为文档类型HotelDoc
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 2.2.创建新增文档的Request对象
        request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
    }
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);
}

5.6.小结

文档操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk
  • 准备参数(Index、Update、Bulk时需要)
  • 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk
  • 解析结果(Get时需要)

分布式搜索引擎02
在昨天的学习中,我们已经导入了大量数据到elasticsearch中,实现了elasticsearch的数据存储功能。但elasticsearch最擅长的还是搜索和数据分析。

所以今天,我们研究下elasticsearch的数据搜索功能。我们会分别使用DSLRestClient实现搜索。

0.学习目标

1.DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1.DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all
  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:
    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
    • bool
    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

我们以查询所有为例,其中:

  • 查询类型为match_all
  • 没有查询条件
// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

其它查询无非就是查询类型查询条件的变化。

1.2.全文检索查询

1.2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索
  • 百度输入框搜索

例如京东:

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

1.2.2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

1.2.3.示例

match查询示例:

multi_match查询示例:

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.2.4.总结

match和multi_match的区别是什么?

  • match:根据一个字段查询
  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

1.3.精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

1.3.1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

1.3.2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

示例:

1.3.3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
  • range查询:根据数值范围查询,可以是数值、日期的范围

1.4.地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

附近的酒店:

附近的车:

1.4.1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

这种并不符合“附近的人”这样的需求,所以我们就不做了。

1.4.2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

示例:

我们先搜索陆家嘴附近15km的酒店:

发现共有47家酒店。

然后把半径缩短到3公里:

可以发现,搜索到的酒店数量减少到了5家。

1.5.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 “虹桥如家”,结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法
  • BM25算法,elasticsearch5.1版本后采用的算法

1.5.2.算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果

2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化
  • 过滤条件:brand = “如家”
  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight
  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}

测试,在未添加算分函数时,如家得分如下:

添加了算分函数后,如家得分就提升了:

3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算

1.5.3.布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分

1)语法示例:

GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}

2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中
  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”
  • should:选择性匹配的条件,可以理解为“或”
  • must_not:必须不匹配的条件,不参与打分
  • filter:必须匹配的条件,不参与打分

2.搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

2.1.排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

2.1.1.普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

示例

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序

2.1.2.地理坐标排序

地理坐标排序略有不同。

语法说明

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点
  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
  • 根据距离排序

示例:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

提示:获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/

假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。

2.2.分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

2.2.1.基本的分页

分页的基本语法如下:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

2.2.2.深度分页问题

现在,我要查询990~1000的数据,查询逻辑要这么写:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 990, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

2.2.3.小结

分页查询的常见实现方案以及优缺点:

  • from + size
    • 优点:支持随机翻页
    • 缺点:深度分页问题,默认查询上限(from + size)是10000
    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search
    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:只能向后逐页查询,不支持随机翻页
    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll
    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:会有额外内存消耗,并且搜索结果是非实时的
    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

2.3.高亮

2.3.1.高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如标签
  • 2)页面给标签编写CSS样式

2.3.2.实现高亮

高亮的语法

GET /hotel/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "FIELD": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

示例

2.4.总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件
  • from和size:分页条件
  • sort:排序条件
  • highlight:高亮条件

示例:

3.RestClient查询文档

文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:

  • 1)准备Request对象
  • 2)准备请求参数
  • 3)发起请求
  • 4)解析响应

3.1.快速入门

我们以match_all查询为例

3.1.1.发起查询请求

代码解读:

  • 第一步,创建SearchRequest对象,指定索引库名
  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等
    • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL
  • 第三步,利用client.search()发送请求,得到响应

这里关键的API有两个,一个是request.source(),其中包含了查询、排序、分页、高亮等所有功能:

另一个是QueryBuilders,其中包含match、term、function_score、bool等各种查询:

3.1.2.解析响应

响应结果的解析:

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • _source:文档中的原始数据,也是json对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
    • SearchHits#getTotalHits().value:获取总条数信息
    • SearchHits#getHits():获取SearchHit数组,也就是文档数组
      • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

3.1.3.完整代码

完整代码如下:

@Test
void testMatchAll() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchAllQuery());
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);

    // 4.解析响应
    handleResponse(response);
}

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

3.1.4.小结

查询的基本步骤是:

  1. 创建SearchRequest对象
  2. 准备Request.source(),也就是DSL。① QueryBuilders来构建查询条件② 传入Request.source() 的 query() 方法
  3. 发送请求,得到结果
  4. 解析结果(参考JSON结果,从外到内,逐层解析)

3.2.match查询

全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。

因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:

而结果解析代码则完全一致,可以抽取并共享。

完整代码如下:

@Test
void testMatch() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchQuery("all", "如家"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.3.精确查询

精确查询主要是两者:

  • term:词条精确匹配
  • range:范围查询

与之前的查询相比,差异同样在查询条件,其它都一样。

查询条件构造的API如下:

3.4.布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:

可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。

完整代码如下:

@Test
void testBool() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.准备BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.2.添加term
    boolQuery.must(QueryBuilders.termQuery("city", "杭州"));
    // 2.3.添加range
    boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));

    request.source().query(boolQuery);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.5.排序、分页

搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。

对应的API如下:

完整代码示例:

@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;

    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.6.高亮

高亮的代码与之前代码差异较大,有两点:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果

3.6.1.高亮请求构建

高亮请求的构建API如下:

上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。

完整代码如下:

@Test
void testHighlight() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchQuery("all", "如家"));
    // 2.2.高亮
    request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.6.2.高亮结果解析

高亮的结果与查询的文档结果默认是分离的,并不在一起。

因此解析高亮的代码需要额外处理:

代码解读:

  • 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象
  • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
  • 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField
  • 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
  • 第五步:用高亮的结果替换HotelDoc中的非高亮结果

完整代码如下:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

4.黑马旅游案例

下面,我们通过黑马旅游的案例来实战演练下之前学习的知识。

我们实现四部分功能:

  • 酒店搜索和分页
  • 酒店结果过滤
  • 我周边的酒店
  • 酒店竞价排名

启动我们提供的hotel-demo项目,其默认端口是8089,访问http://localhost:8090,就能看到项目页面了:

4.1.酒店搜索和分页

案例需求:实现黑马旅游的酒店搜索功能,完成关键字搜索和分页

4.1.1.需求分析

在项目的首页,有一个大大的搜索框,还有分页按钮:

点击搜索按钮,可以看到浏览器控制台发出了请求:

请求参数如下:

由此可以知道,我们这个请求的信息如下:

  • 请求方式:POST
  • 请求路径:/hotel/list
  • 请求参数:JSON对象,包含4个字段:
    • key:搜索关键字
    • page:页码
    • size:每页大小
    • sortBy:排序,目前暂不实现
  • 返回值:分页查询,需要返回分页结果PageResult,包含两个属性:
    • total:总条数
    • List:当前页的数据

因此,我们实现业务的流程如下:

  • 步骤一:定义实体类,接收请求参数的JSON对象
  • 步骤二:编写controller,接收页面的请求
  • 步骤三:编写业务实现,利用RestHighLevelClient实现搜索、分页

4.1.2.定义实体类

实体类有两个,一个是前端的请求参数实体,一个是服务端应该返回的响应结果实体。

1)请求参数

前端请求的json结构如下:

{
    "key": "搜索关键字",
    "page": 1,
    "size": 3,
    "sortBy": "default"
}

因此,我们在cn.itcast.hotel.pojo包下定义一个实体类:

package cn.itcast.hotel.pojo;

import lombok.Data;

@Data
public class RequestParams {
    private String key;
    private Integer page;
    private Integer size;
    private String sortBy;
}

2)返回值

分页查询,需要返回分页结果PageResult,包含两个属性:

  • total:总条数
  • List:当前页的数据

因此,我们在cn.itcast.hotel.pojo中定义返回结果:

package cn.itcast.hotel.pojo;

import lombok.Data;

import java.util.List;

@Data
public class PageResult {
    private Long total;
    private List<HotelDoc> hotels;

    public PageResult() {
    }

    public PageResult(Long total, List<HotelDoc> hotels) {
        this.total = total;
        this.hotels = hotels;
    }
}

4.1.3.定义controller

定义一个HotelController,声明查询接口,满足下列要求:

  • 请求方式:Post
  • 请求路径:/hotel/list
  • 请求参数:对象,类型为RequestParam
  • 返回值:PageResult,包含两个属性
    • Long total:总条数
    • List hotels:酒店数据

因此,我们在cn.itcast.hotel.web中定义HotelController:

@RestController
@RequestMapping("/hotel")
public class HotelController {

    @Autowired
    private IHotelService hotelService;
    // 搜索酒店数据
    @PostMapping("/list")
    public PageResult search(@RequestBody RequestParams params){
        return hotelService.search(params);
    }
}

4.1.4.实现搜索业务

我们在controller调用了IHotelService,并没有实现该方法,因此下面我们就在IHotelService中定义方法,并且去实现业务逻辑。

1)在cn.itcast.hotel.service中的IHotelService接口中定义一个方法:

/**
 * 根据关键字搜索酒店信息
 * @param params 请求参数对象,包含用户输入的关键字 
 * @return 酒店文档列表
 */
PageResult search(RequestParams params);

2)实现搜索业务,肯定离不开RestHighLevelClient,我们需要把它注册到Spring中作为一个Bean。在cn.itcast.hotel中的HotelDemoApplication中声明这个Bean:

@Bean
public RestHighLevelClient client(){
    return  new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.150.101:9200")
    ));
}

3)在cn.itcast.hotel.service.impl中的HotelService中实现search方法:

@Override
public PageResult search(RequestParams params) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        // 2.1.query
        String key = params.getKey();
        if (key == null || "".equals(key)) {
            boolQuery.must(QueryBuilders.matchAllQuery());
        } else {
            boolQuery.must(QueryBuilders.matchQuery("all", key));
        }

        // 2.2.分页
        int page = params.getPage();
        int size = params.getSize();
        request.source().from((page - 1) * size).size(size);

        // 3.发送请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析响应
        return handleResponse(response);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

// 结果解析
private PageResult handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    List<HotelDoc> hotels = new ArrayList<>();
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 放入集合
        hotels.add(hotelDoc);
    }
    // 4.4.封装返回
    return new PageResult(total, hotels);
}

4.2.酒店结果过滤

需求:添加品牌、城市、星级、价格等过滤功能

4.2.1.需求分析

在页面搜索框下面,会有一些过滤项:

传递的参数如图:

包含的过滤条件有:

  • brand:品牌值
  • city:城市
  • minPrice~maxPrice:价格范围
  • starName:星级

我们需要做两件事情:

  • 修改请求参数的对象RequestParams,接收上述参数
  • 修改业务逻辑,在搜索条件之外,添加一些过滤条件

4.2.2.修改实体类

修改在cn.itcast.hotel.pojo包下的实体类RequestParams:

@Data
public class RequestParams {
    private String key;
    private Integer page;
    private Integer size;
    private String sortBy;
    // 下面是新增的过滤条件参数
    private String city;
    private String brand;
    private String starName;
    private Integer minPrice;
    private Integer maxPrice;
}

4.2.3.修改搜索业务

在HotelService的search方法中,只有一个地方需要修改:requet.source().query( … )其中的查询条件。

在之前的业务中,只有match查询,根据关键字搜索,现在要添加条件过滤,包括:

  • 品牌过滤:是keyword类型,用term查询
  • 星级过滤:是keyword类型,用term查询
  • 价格过滤:是数值类型,用range查询
  • 城市过滤:是keyword类型,用term查询

多个查询条件组合,肯定是boolean查询来组合:

  • 关键字搜索放到must中,参与算分
  • 其它过滤条件放到filter中,不参与算分

因为条件构建的逻辑比较复杂,这里先封装为一个函数:

buildBasicQuery的代码如下:

private void buildBasicQuery(RequestParams params, SearchRequest request) {
    // 1.构建BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.关键字搜索
    String key = params.getKey();
    if (key == null || "".equals(key)) {
        boolQuery.must(QueryBuilders.matchAllQuery());
    } else {
        boolQuery.must(QueryBuilders.matchQuery("all", key));
    }
    // 3.城市条件
    if (params.getCity() != null && !params.getCity().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
    }
    // 4.品牌条件
    if (params.getBrand() != null && !params.getBrand().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
    }
    // 5.星级条件
    if (params.getStarName() != null && !params.getStarName().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
    }
    // 6.价格
    if (params.getMinPrice() != null && params.getMaxPrice() != null) {
        boolQuery.filter(QueryBuilders
                         .rangeQuery("price")
                         .gte(params.getMinPrice())
                         .lte(params.getMaxPrice())
                        );
    }
    // 7.放入source
    request.source().query(boolQuery);
}

4.3.我周边的酒店

需求:我附近的酒店

4.3.1.需求分析

在酒店列表页的右侧,有一个小地图,点击地图的定位按钮,地图会找到你所在的位置:

并且,在前端会发起查询请求,将你的坐标发送到服务端:

我们要做的事情就是基于这个location坐标,然后按照距离对周围酒店排序。实现思路如下:

  • 修改RequestParams参数,接收location字段
  • 修改search方法业务逻辑,如果location有值,添加根据geo_distance排序的功能

4.3.2.修改实体类

修改在cn.itcast.hotel.pojo包下的实体类RequestParams:

package cn.itcast.hotel.pojo;

import lombok.Data;

@Data
public class RequestParams {
    private String key;
    private Integer page;
    private Integer size;
    private String sortBy;
    private String city;
    private String brand;
    private String starName;
    private Integer minPrice;
    private Integer maxPrice;
    // 我当前的地理坐标
    private String location;
}

4.3.3.距离排序API

我们以前学习过排序功能,包括两种:

  • 普通字段排序
  • 地理坐标排序

我们只讲了普通字段排序对应的java写法。地理坐标排序只学过DSL语法,如下:

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "price": "asc"  
    },
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度",
          "order" : "asc",
          "unit" : "km"
      }
    }
  ]
}

对应的java代码示例:

4.3.4.添加距离排序

cn.itcast.hotel.service.implHotelServicesearch方法中,添加一个排序功能:

完整代码:

@Override
public PageResult search(RequestParams params) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        // 2.1.query
        buildBasicQuery(params, request);

        // 2.2.分页
        int page = params.getPage();
        int size = params.getSize();
        request.source().from((page - 1) * size).size(size);

        // 2.3.排序
        String location = params.getLocation();
        if (location != null && !location.equals("")) {
            request.source().sort(SortBuilders
                                  .geoDistanceSort("location", new GeoPoint(location))
                                  .order(SortOrder.ASC)
                                  .unit(DistanceUnit.KILOMETERS)
                                 );
        }

        // 3.发送请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析响应
        return handleResponse(response);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

4.3.5.排序距离显示

重启服务后,测试我的酒店功能:

发现确实可以实现对我附近酒店的排序,不过并没有看到酒店到底距离我多远,这该怎么办?

排序完成后,页面还要获取我附近每个酒店的具体距离值,这个值在响应结果中是独立的:

因此,我们在结果解析阶段,除了解析source部分以外,还要得到sort部分,也就是排序的距离,然后放到响应结果中。

我们要做两件事:

  • 修改HotelDoc,添加排序距离字段,用于页面显示
  • 修改HotelService类中的handleResponse方法,添加对sort值的获取

1)修改HotelDoc类,添加距离字段

package cn.itcast.hotel.pojo;

import lombok.Data;
import lombok.NoArgsConstructor;


@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    // 排序时的 距离值
    private Object distance;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}

2)修改HotelService中的handleResponse方法

重启后测试,发现页面能成功显示距离了:

4.4.酒店竞价排名

需求:让指定的酒店在搜索结果中排名置顶

4.4.1.需求分析

要让指定酒店在搜索结果中排名置顶,效果如图:

页面会给指定的酒店添加广告标记。

那怎样才能让指定的酒店排名置顶呢?

我们之前学习过的function_score查询可以影响算分,算分高了,自然排名也就高了。而function_score包含3个要素:

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算

这里的需求是:让指定酒店排名靠前。因此我们需要给这些酒店添加一个标记,这样在过滤条件中就可以根据这个标记来判断,是否要提高算分

比如,我们给酒店添加一个字段:isAD,Boolean类型:

  • true:是广告
  • false:不是广告

这样function_score包含3个要素就很好确定了:

  • 过滤条件:判断isAD 是否为true
  • 算分函数:我们可以用最简单暴力的weight,固定加权值
  • 加权方式:可以用默认的相乘,大大提高算分

因此,业务的实现步骤包括:

  1. 给HotelDoc类添加isAD字段,Boolean类型
  2. 挑选几个你喜欢的酒店,给它的文档数据添加isAD字段,值为true
  3. 修改search方法,添加function score功能,给isAD值为true的酒店增加权重

4.4.2.修改HotelDoc实体

cn.itcast.hotel.pojo包下的HotelDoc类添加isAD字段:

4.4.3.添加广告标记

接下来,我们挑几个酒店,添加isAD字段,设置为true:

POST /hotel/_update/1902197537
{
    "doc": {
        "isAD": true
    }
}
POST /hotel/_update/2056126831
{
    "doc": {
        "isAD": true
    }
}
POST /hotel/_update/1989806195
{
    "doc": {
        "isAD": true
    }
}
POST /hotel/_update/2056105938
{
    "doc": {
        "isAD": true
    }
}

4.4.4.添加算分函数查询

接下来我们就要修改查询条件了。之前是用的boolean 查询,现在要改成function_socre查询。

function_score查询结构如下:

对应的JavaAPI如下:

我们可以将之前写的boolean查询作为原始查询条件放到query中,接下来就是添加过滤条件算分函数加权模式了。所以原来的代码依然可以沿用。

修改cn.itcast.hotel.service.impl包下的HotelService类中的buildBasicQuery方法,添加算分函数查询:

private void buildBasicQuery(RequestParams params, SearchRequest request) {
    // 1.构建BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 关键字搜索
    String key = params.getKey();
    if (key == null || "".equals(key)) {
        boolQuery.must(QueryBuilders.matchAllQuery());
    } else {
        boolQuery.must(QueryBuilders.matchQuery("all", key));
    }
    // 城市条件
    if (params.getCity() != null && !params.getCity().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
    }
    // 品牌条件
    if (params.getBrand() != null && !params.getBrand().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
    }
    // 星级条件
    if (params.getStarName() != null && !params.getStarName().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
    }
    // 价格
    if (params.getMinPrice() != null && params.getMaxPrice() != null) {
        boolQuery.filter(QueryBuilders
                         .rangeQuery("price")
                         .gte(params.getMinPrice())
                         .lte(params.getMaxPrice())
                        );
    }

    // 2.算分控制
    FunctionScoreQueryBuilder functionScoreQuery =
        QueryBuilders.functionScoreQuery(
        // 原始查询,相关性算分的查询
        boolQuery,
        // function score的数组
        new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
            // 其中的一个function score 元素
            new FunctionScoreQueryBuilder.FilterFunctionBuilder(
                // 过滤条件
                QueryBuilders.termQuery("isAD", true),
                // 算分函数
                ScoreFunctionBuilders.weightFactorFunction(10)
            )
        });
    request.source().query(functionScoreQuery);
}

分布式搜索引擎03

0.学习目标

1.数据聚合

聚合(aggregations可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

1.1.聚合的种类

聚合常见的有三类:

  • 桶(Bucket)聚合:用来对文档做分组
    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求max、min、avg、sum等
  • 管道(pipeline)聚合:其它聚合的结果为基础做聚合

注意:参加聚合的字段必须是keyword、日期、数值、布尔类型

1.2.DSL实现聚合

现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。

1.2.1.Bucket聚合语法

语法如下:

GET /hotel/_search
{
  "size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果
  "aggs": { // 定义聚合
    "brandAgg": { //给聚合起个名字
      "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
        "field": "brand", // 参与聚合的字段
        "size": 20 // 希望获取的聚合结果数量
      }
    }
  }
}

结果如图:

1.2.2.聚合结果排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为count,并且按照count降序排序。

我们可以指定order属性,自定义聚合的排序方式:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc" // 按照_count升序排列
        },
        "size": 20
      }
    }
  }
}

1.2.3.限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

我们可以限定要聚合的文档范围,只要添加query条件即可:

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200 // 只对200元以下的文档聚合
      }
    }
  }, 
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

这次,聚合得到的品牌明显变少了:

1.2.4.Metric聚合语法

上节课,我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。

这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。

语法如下:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20
      },
      "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": { // 聚合名称
          "stats": { // 聚合类型,这里stats可以计算min、max、avg等
            "field": "score" // 聚合字段,这里是score
          }
        }
      }
    }
  }
}

这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。

另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:

1.2.5.小结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称
  • 聚合类型
  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量
  • order:指定聚合结果排序方式
  • field:指定聚合字段

1.3.RestAPI实现聚合

1.3.1.API语法

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件的语法:

聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:

1.3.2.业务需求

需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:

分析:

目前,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。但是用户搜索条件改变时,搜索结果会跟着变化。

例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。

也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。

如何得知搜索结果中包含哪些品牌?如何得知搜索结果中包含哪些城市?

使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。

因为是对搜索结果聚合,因此聚合是限定范围的聚合,也就是说聚合的限定条件跟搜索文档的条件一致。

查看浏览器可以发现,前端其实已经发出了这样的一个请求:

请求参数与搜索文档的参数完全一致

返回值类型就是页面要展示的最终结果:

结果是一个Map结构:

  • key是字符串,城市、星级、品牌、价格
  • value是集合,例如多个城市的名称

1.3.3.业务实现

cn.itcast.hotel.web包的HotelController中添加一个方法,遵循下面的要求:

  • 请求方式:POST
  • 请求路径:/hotel/filters
  • 请求参数:RequestParams,与搜索文档的参数一致
  • 返回值类型:Map>

代码:

@PostMapping("filters")
    public Map<String, List<String>> getFilters(@RequestBody RequestParams params){
        return hotelService.getFilters(params);
    }

这里调用了IHotelService中的getFilters方法,尚未实现。

cn.itcast.hotel.service.IHotelService中定义新方法:

Map> filters(RequestParams params);

cn.itcast.hotel.service.impl.HotelService中实现该方法:

@Override
public Map<String, List<String>> filters(RequestParams params) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        // 2.1.query
        buildBasicQuery(params, request);
        // 2.2.设置size
        request.source().size(0);
        // 2.3.聚合
        buildAggregation(request);
        // 3.发出请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析结果
        Map<String, List<String>> result = new HashMap<>();
        Aggregations aggregations = response.getAggregations();
        // 4.1.根据品牌名称,获取品牌结果
        List<String> brandList = getAggByName(aggregations, "brandAgg");
        result.put("品牌", brandList);
        // 4.2.根据品牌名称,获取品牌结果
        List<String> cityList = getAggByName(aggregations, "cityAgg");
        result.put("城市", cityList);
        // 4.3.根据品牌名称,获取品牌结果
        List<String> starList = getAggByName(aggregations, "starAgg");
        result.put("星级", starList);

        return result;
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

private void buildAggregation(SearchRequest request) {
    request.source().aggregation(AggregationBuilders
                                 .terms("brandAgg")
                                 .field("brand")
                                 .size(100)
                                );
    request.source().aggregation(AggregationBuilders
                                 .terms("cityAgg")
                                 .field("city")
                                 .size(100)
                                );
    request.source().aggregation(AggregationBuilders
                                 .terms("starAgg")
                                 .field("starName")
                                 .size(100)
                                );
}

private List<String> getAggByName(Aggregations aggregations, String aggName) {
    // 4.1.根据聚合名称获取聚合结果
    Terms brandTerms = aggregations.get(aggName);
    // 4.2.获取buckets
    List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
    // 4.3.遍历
    List<String> brandList = new ArrayList<>();
    for (Terms.Bucket bucket : buckets) {
        // 4.4.获取key
        String key = bucket.getKeyAsString();
        brandList.add(key);
    }
    return brandList;
}

2.自动补全

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:

这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。

因为需要根据拼音字母来推断,因此要用到拼音分词功能。

2.1.拼音分词器

要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin

课前资料中也提供了拼音分词器的安装包:

安装方式与IK分词器一样,分三步:

①解压

②上传到虚拟机中,elasticsearch的plugin目录

③重启elasticsearch

④测试

详细安装步骤可以参考IK分词器的安装过程。

测试用法如下:

POST /_analyze
{
  "text": "如家酒店还不错",
  "analyzer": "pinyin"
}

结果:

2.2.自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

文档分词时会依次由这三部分来处理文档:

声明自定义分词器的语法如下:

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { // 自定义分词器
        "my_analyzer": {  // 分词器名称
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": { // 自定义tokenizer filter
        "py": { // 过滤器名称
          "type": "pinyin", // 过滤器类型,这里是pinyin
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}

测试:

总结:

如何使用拼音分词器?

  • ①下载pinyin分词器
  • ②解压并放到elasticsearch的plugin目录
  • ③重启即可

如何自定义分词器?

  • ①创建索引库时,在settings中配置,可以包含三部分
  • ②character filter
  • ③tokenizer
  • ④filter

拼音分词器注意事项?

  • 为了避免搜索到同音字,搜索时不要使用拼音分词器

2.3.自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。
  • 字段的内容一般是用来补全的多个词条形成的数组。

比如,一个这样的索引库:

// 创建索引库
PUT test
{
  "mappings": {
    "properties": {
      "title":{
        "type": "completion"
      }
    }
  }
}

然后插入下面的数据:

// 示例数据
POST test/_doc
{
  "title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
  "title": ["SK-II", "PITERA"]
}
POST test/_doc
{
  "title": ["Nintendo", "switch"]
}

查询的DSL语句如下:

// 自动补全查询
GET /test/_search
{
  "suggest": {
    "title_suggest": {
      "text": "s", // 关键字
      "completion": {
        "field": "title", // 补全查询的字段
        "skip_duplicates": true, // 跳过重复的
        "size": 10 // 获取前10条结果
      }
    }
  }
}

2.4.实现酒店搜索框自动补全

现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建。

另外,我们需要添加一个字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示。

因此,总结一下,我们需要做的事情包括:

  1. 修改hotel索引库结构,设置自定义拼音分词器
  2. 修改索引库的name、all字段,使用自定义分词器
  3. 索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器
  4. 给HotelDoc类添加suggestion字段,内容包含brand、business
  5. 重新导入数据到hotel库

2.4.1.修改酒店映射结构

代码如下:

// 酒店数据索引库
PUT /hotel
{
  "settings": {
    "analysis": {
      "analyzer": {
        "text_anlyzer": {
          "tokenizer": "ik_max_word",
          "filter": "py"
        },
        "completion_analyzer": {
          "tokenizer": "keyword",
          "filter": "py"
        }
      },
      "filter": {
        "py": {
          "type": "pinyin",
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "id":{
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword",
        "copy_to": "all"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart"
      },
      "suggestion":{
          "type": "completion",
          "analyzer": "completion_analyzer"
      }
    }
  }
}

2.4.2.修改HotelDoc实体

HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。

因此我们在HotelDoc中添加一个suggestion字段,类型为List,然后将brand、city、business等信息放到里面。

代码如下:

package cn.itcast.hotel.pojo;

import lombok.Data;
import lombok.NoArgsConstructor;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    private Object distance;
    private Boolean isAD;
    private List<String> suggestion;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
        // 组装suggestion
        if(this.business.contains("/")){
            // business有多个值,需要切割
            String[] arr = this.business.split("/");
            // 添加元素
            this.suggestion = new ArrayList<>();
            this.suggestion.add(this.brand);
            Collections.addAll(this.suggestion, arr);
        }else {
            this.suggestion = Arrays.asList(this.brand, this.business);
        }
    }
}

2.4.3.重新导入

重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:

2.4.4.自动补全查询的JavaAPI

之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:

而自动补全的结果也比较特殊,解析的代码如下:

2.4.5.实现搜索框自动补全

查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:

返回值是补全词条的集合,类型为List

1)在cn.itcast.hotel.web包下的HotelController中添加新接口,接收新的请求:

@GetMapping("suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix) {
    return hotelService.getSuggestions(prefix);
}

2)在cn.itcast.hotel.service包下的IhotelService中添加方法:

List getSuggestions(String prefix);

3)在cn.itcast.hotel.service.impl.HotelService中实现该方法:

@Override
public List<String> getSuggestions(String prefix) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        request.source().suggest(new SuggestBuilder().addSuggestion(
            "suggestions",
            SuggestBuilders.completionSuggestion("suggestion")
            .prefix(prefix)
            .skipDuplicates(true)
            .size(10)
        ));
        // 3.发起请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析结果
        Suggest suggest = response.getSuggest();
        // 4.1.根据补全查询名称,获取补全结果
        CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
        // 4.2.获取options
        List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
        // 4.3.遍历
        List<String> list = new ArrayList<>(options.size());
        for (CompletionSuggestion.Entry.Option option : options) {
            String text = option.getText().toString();
            list.add(text);
        }
        return list;
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

3.数据同步

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步

3.1.思路分析

常见的数据同步方案有三种:

  • 同步调用
  • 异步通知
  • 监听binlog

3.1.1.同步调用

方案一:同步调用

基本步骤如下:

  • hotel-demo对外提供接口,用来修改elasticsearch中的数据
  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

3.1.2.异步通知

方案二:异步通知

流程如下:

  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

3.1.3.监听binlog

方案三:监听binlog

流程如下:

  • 给mysql开启binlog功能
  • mysql完成增、删、改操作都会记录在binlog中
  • hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容

3.1.4.选择

方式一:同步调用

  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高

3.2.实现数据同步

3.2.1.思路

利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。

步骤:

  • 导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD
  • 声明exchange、queue、RoutingKey
  • 在hotel-admin中的增、删、改业务中完成消息发送
  • 在hotel-demo中完成消息监听,并更新elasticsearch中数据
  • 启动并测试数据同步功能

3.2.2.导入demo

导入课前资料提供的hotel-admin项目:

运行后,访问 http://localhost:8099

其中包含了酒店的CRUD功能:

3.2.3.声明交换机、队列

MQ结构如图:

1)引入依赖

在hotel-admin、hotel-demo中引入rabbitmq的依赖:

<!--amqp-->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

2)声明队列交换机名称

在hotel-admin和hotel-demo中的cn.itcast.hotel.constatnts包下新建一个类MqConstants

package cn.itcast.hotel.constatnts;

    public class MqConstants {
    /**
     * 交换机
     */
    public final static String HOTEL_EXCHANGE = "hotel.topic";
    /**
     * 监听新增和修改的队列
     */
    public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";
    /**
     * 监听删除的队列
     */
    public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";
    /**
     * 新增或修改的RoutingKey
     */
    public final static String HOTEL_INSERT_KEY = "hotel.insert";
    /**
     * 删除的RoutingKey
     */
    public final static String HOTEL_DELETE_KEY = "hotel.delete";
}

3)声明队列交换机

在hotel-demo中,定义配置类,声明队列、交换机:

package cn.itcast.hotel.config;

import cn.itcast.hotel.constants.MqConstants;
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.core.TopicExchange;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class MqConfig {
    @Bean
    public TopicExchange topicExchange(){
        return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);
    }

    @Bean
    public Queue insertQueue(){
        return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);
    }

    @Bean
    public Queue deleteQueue(){
        return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);
    }

    @Bean
    public Binding insertQueueBinding(){
        return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);
    }

    @Bean
    public Binding deleteQueueBinding(){
        return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);
    }
}

3.2.4.发送MQ消息

在hotel-admin中的增、删、改业务中分别发送MQ消息:

3.2.5.接收MQ消息

hotel-demo接收到MQ消息要做的事情包括:

  • 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
  • 删除消息:根据传递的hotel的id删除索引库中的一条数据

1)首先在hotel-demo的cn.itcast.hotel.service包下的IHotelService中新增新增、删除业务

void deleteById(Long id);

void insertById(Long id);

2)给hotel-demo中的cn.itcast.hotel.service.impl包下的HotelService中实现业务:

@Override
public void deleteById(Long id) {
    try {
        // 1.准备Request
        DeleteRequest request = new DeleteRequest("hotel", id.toString());
        // 2.发送请求
        client.delete(request, RequestOptions.DEFAULT);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

@Override
public void insertById(Long id) {
    try {
        // 0.根据id查询酒店数据
        Hotel hotel = getById(id);
        // 转换为文档类型
        HotelDoc hotelDoc = new HotelDoc(hotel);

        // 1.准备Request对象
        IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());
        // 2.准备Json文档
        request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);
        // 3.发送请求
        client.index(request, RequestOptions.DEFAULT);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

3)编写监听器

在hotel-demo中的cn.itcast.hotel.mq包新增一个类:

package cn.itcast.hotel.mq;

import cn.itcast.hotel.constants.MqConstants;
import cn.itcast.hotel.service.IHotelService;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class HotelListener {

    @Autowired
    private IHotelService hotelService;

    /**
     * 监听酒店新增或修改的业务
     * @param id 酒店id
     */
    @RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)
    public void listenHotelInsertOrUpdate(Long id){
        hotelService.insertById(id);
    }

    /**
     * 监听酒店删除的业务
     * @param id 酒店id
     */
    @RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)
    public void listenHotelDelete(Long id){
        hotelService.deleteById(id);
    }
}

4.集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。
  • 节点(node) :集群中的一个 Elasticearch 实例
  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中解决问题:数据量太大,单点存储量有限的问题。此处,我们把数据分成3片:shard0、shard1、shard2
  • 主分片(Primary shard):相对于副本分片的定义。
  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点
  • 然后对每个分片进行备份,放到对方节点,完成互相备份

这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:

现在,每个分片都有1个备份,存储在3个节点:

  • node0:保存了分片0和1
  • node1:保存了分片0和2
  • node2:保存了分片1和2

4.1.搭建ES集群

参考课前资料的文档:

其中的第四章节:

4.2.集群脑裂问题

4.2.1.集群职责划分

elasticsearch中集群节点有不同的职责划分:

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第
  • data节点:对CPU和内存要求都高
  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:

4.2.2.脑裂问题

脑裂是因为集群中的节点失联导致的。

例如一个集群中,主节点与其它节点失联:

此时,node2和node3认为node1宕机,就会重新选主:

当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。

4.2.3.小结

master eligible节点的作用是什么?

  • 参与集群选主
  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点
  • 合并查询到的结果,返回给用户

4.3.集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?

4.3.1.分片存储测试

插入三条数据:

测试可以看到,三条数据分别在不同分片:

结果:

4.3.2.分片存储原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

说明:

  • _routing默认是文档的id
  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档的流程如下:

解读:

  • 1)新增一个id=1的文档
  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2
  • 3)shard-2的主分片在node3节点,将数据路由到node3
  • 4)保存文档
  • 5)同步给shard-2的副本replica-2,在node2节点
  • 6)返回结果给coordinating-node节点

4.4.集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片
  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

4.5.集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:

现在,node1是主节点,其它两个节点是从节点。

2)突然,node1发生了故障:

宕机后的第一件事,需要重新选主,例如选中了node2:

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3: